A015502 a(1) = 1, a(n) = Sum_{k=1..n-1} (3^k - 1)/2 * a(k).
1, 1, 5, 70, 2870, 350140, 127801100, 139814403400, 458731057555400, 4514831068460246800, 133300387296288786770000, 11806948504381482999365980000, 3137354163532752044074527571580000, 2500979519710095684958538548015855960000
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..50
Crossrefs
Programs
-
Magma
[n le 2 select 1 else ((3^(n-1)+1)/2)*Self(n-1): n in [1..15]]; // Vincenzo Librandi, Nov 11 2012
-
Mathematica
Flatten[{1, Table[QPochhammer[-1, 3, n]/2^(n+1), {n, 2, 15}]}] (* Vaclav Kotesovec, Mar 24 2017 *) a[n_, m_]:= a[n, m]= If[n<3, 1, (m^(n-1)+m-2)*a[n-1,m]/(m-1)]; Table[a[n,3], {n,20}] (* G. C. Greubel, Apr 29 2023 *)
-
SageMath
@CachedFunction # a = A015502 def a(n,m): return 1 if (n<3) else (m^(n-1) + m-2)*a(n-1,m)/(m-1) [a(n,3) for n in range(1,31)] # G. C. Greubel, Apr 29 2023
Formula
a(n) = ((3^(n-1) + 1)/2) * a(n-1). - Vincenzo Librandi, Nov 11 2012
a(n) ~ c * 3^(n*(n-1)/2) / 2^(n+1), where c = A132323 = QPochhammer(-1, 1/3) = 3.129868... . - Vaclav Kotesovec, Mar 24 2017