cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015616 Number of triples (i,j,k) with 1 <= i < j < k <= n and gcd(i,j,k) = 1.

Original entry on oeis.org

0, 0, 1, 4, 10, 19, 34, 52, 79, 109, 154, 196, 262, 325, 409, 493, 613, 712, 865, 997, 1171, 1336, 1567, 1747, 2017, 2251, 2548, 2818, 3196, 3472, 3907, 4267, 4717, 5125, 5665, 6079, 6709, 7222, 7858, 8410, 9190, 9748, 10609, 11299, 12127
Offset: 1

Views

Author

Keywords

Examples

			For n=6, the a(6) = 19 solutions are the binomial(6,3) = (6*5*4)/(1*2*3) = 20 possible triples minus the triple (2,4,6) with GCD=2.
		

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,j,k,t1,t2,t3; t1:=0; for i from 1 to n-2 do for j from i+1 to n-1 do t2:=gcd(i,j); for k from j+1 to n do t3:=gcd(t2,k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
    # program based on Moebius transform, partial sums of A000741:
    with(numtheory):
    b:= proc(n) option remember;
          add(mobius(n/d)*(d-2)*(d-1)/2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          b(n) +`if`(n=1, 0, a(n-1))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 08 2011
  • Mathematica
    a[n_] := (cnt = 0; Do[cnt += Boole[GCD[i, j, k] == 1], {i, 1, n-2}, {j, i+1, n-1}, {k, j+1, n}]; cnt); Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    print1(c=0);for(k=1,99,for(j=1,k-1, gcd(j,k)==1 && (c+=j-1) && next; for(i=1,j-1, gcd([i,j,k])>1 || c++)); print1(", "c))
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015616(n):
        if n <= 1:
            return 0
        c, j = n*(n-1)*(n-2)//6, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c -= (j2-j)*A015616(k1)
            j, k1 = j2, n//j2
        return c # Chai Wah Wu, Mar 30 2021

Formula

a(n) = (A071778(n) - 3*A018805(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004
a(n) = Sum_{i=1..n} A000741(i). - Alois P. Heinz, Feb 08 2011
For n > 1, a(n) = n(n-1)(n-2)/6 - Sum_{j=2..n} a(floor(n/j)) = A000292(n-2) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021