A015650 Number of ordered 5-tuples of integers from [ 1..n ] with no global factor.
1, 5, 19, 49, 118, 225, 434, 729, 1209, 1850, 2850, 4059, 5878, 8044, 11020, 14566, 19410, 24789, 32103, 40213, 50615, 62260, 77209, 93099, 113504, 135431, 162341, 191396, 227355, 264463, 310838, 359322, 417212, 478408, 551944, 626971, 718360, 812311, 922407, 1036667
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[DivisorSum[k, MoebiusMu[k/#]*Binomial[# + 3, 4] &], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 07 2025 *)
-
PARI
a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+3, 4))); \\ Seiichi Manyama, Jun 12 2021
-
PARI
a(n) = binomial(n+4, 5)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
-
PARI
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^5)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A015650(n): if n == 0: return 0 c, j = n+1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A015650(k1) j, k1 = j2, n//j2 return n*(n+1)*(n+2)*(n+3)*(n+4)//120-c+j # Chai Wah Wu, Apr 18 2021
Formula
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^5. - Ilya Gutkovskiy, Feb 14 2020
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/120 - Sum_{j=2..n} a(floor(n/j)) = A000389(n+4) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Apr 18 2021
a(n) ~ n^5 / (120*zeta(5)). - Amiram Eldar, Jun 08 2025