A015737 Number of 3's in partitions of n into distinct parts.
0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 8, 10, 12, 14, 17, 20, 24, 29, 34, 40, 47, 55, 64, 75, 87, 101, 117, 135, 155, 179, 205, 235, 269, 307, 350, 399, 453, 514, 583, 660, 746, 843, 950, 1070, 1205, 1354, 1520, 1705, 1910, 2138, 2392
Offset: 1
Keywords
Examples
a(9) = 3 because in the eight partitions of 9 into distinct parts, namely [9], [8, 1], [7, 2], [6, 3], [6, 2, 1], [5, 4], [5, 3, 1] and [4, 3, 2], only three contain 3.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (first 70 terms from Vincenzo Librandi)
Crossrefs
Cf. A000009.
Programs
-
Maple
g:=x^3*product(1+x^j,j=1..60)/(1+x^3): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 17 2006
-
Mathematica
Table[Count[Select[IntegerPartitions[n],Length[Union[#]] == Length[#] &], ?(MemberQ[#, 3] &)], {n, 60}] (* _Harvey P. Dale, Aug 19 2011 *) nmax = 100; Rest[CoefficientList[Series[x^3/(1 + x^3) * Product[1 + x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *)
Formula
G.f.: (x^3/(1 + x^3)) * Product_{j >= 1} (1 + x^j). - Emeric Deutsch, Apr 17 2006
Corresponding g.f. for "number of k's" is (x^k/(1 + x^k)) * Product_{j >= 1} (1 + x^j). - Joerg Arndt, Feb 20 2014
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
Extensions
Example clarified by Harvey P. Dale, Aug 19 2011