cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015737 Number of 3's in partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 8, 10, 12, 14, 17, 20, 24, 29, 34, 40, 47, 55, 64, 75, 87, 101, 117, 135, 155, 179, 205, 235, 269, 307, 350, 399, 453, 514, 583, 660, 746, 843, 950, 1070, 1205, 1354, 1520, 1705, 1910, 2138, 2392
Offset: 1

Views

Author

Keywords

Examples

			a(9) = 3 because in the eight partitions of 9 into distinct parts, namely [9], [8, 1], [7, 2], [6, 3], [6, 2, 1], [5, 4], [5, 3, 1] and [4, 3, 2], only three contain 3.
		

Crossrefs

Cf. A000009.

Programs

  • Maple
    g:=x^3*product(1+x^j,j=1..60)/(1+x^3): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 17 2006
  • Mathematica
    Table[Count[Select[IntegerPartitions[n],Length[Union[#]] == Length[#] &], ?(MemberQ[#, 3] &)], {n, 60}] (* _Harvey P. Dale, Aug 19 2011 *)
    nmax = 100; Rest[CoefficientList[Series[x^3/(1 + x^3) * Product[1 + x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *)

Formula

G.f.: (x^3/(1 + x^3)) * Product_{j >= 1} (1 + x^j). - Emeric Deutsch, Apr 17 2006
Corresponding g.f. for "number of k's" is (x^k/(1 + x^k)) * Product_{j >= 1} (1 + x^j). - Joerg Arndt, Feb 20 2014
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015

Extensions

Example clarified by Harvey P. Dale, Aug 19 2011