cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015741 Number of 6's in all the partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 12, 14, 17, 21, 24, 29, 34, 40, 47, 55, 65, 75, 88, 102, 118, 137, 157, 181, 208, 238, 272, 311, 355, 404, 460, 522, 592, 671, 758, 856, 966, 1088, 1224, 1377, 1546, 1734, 1944
Offset: 1

Views

Author

Keywords

Comments

a(n+6) = A015753(n). - Alois P. Heinz, Aug 24 2011

Examples

			a(9) = 2 because in the 8 (=A000009(9)) partitions of 9 into distinct parts, namely [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2] we have altogether two parts equal to 6.
		

Crossrefs

Cf. A015753.

Programs

  • Maple
    g:=x^6*product(1+x^j,j=1..60)/(1+x^6): gser:=series(g,x=0,57): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 17 2006
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[x^6/(1+x^6) * Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 30 2015 *)
    Table[Count[Flatten@Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], 6], {n, 54}] (* Robert Price, May 16 2020 *)

Formula

G.f.: x^6 * product(j>=1, 1+x^j )/(1+x^6). - Emeric Deutsch, Apr 17 2006
Corresponding g.f. for "number of k's" is x^k/(1+x^k)*prod(n>=1, 1+x^n ). [Joerg Arndt, Feb 20 2014]
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015