A015744 Number of partitions of n into distinct parts, none being 2.
1, 1, 0, 1, 2, 2, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 22, 27, 32, 37, 44, 52, 60, 70, 82, 95, 110, 127, 146, 169, 194, 221, 254, 291, 331, 377, 429, 487, 553, 626, 707, 800, 903, 1016, 1145, 1288, 1445, 1622, 1819, 2036, 2278, 2546, 2842, 3172, 3536, 3936, 4381
Offset: 0
Keywords
Examples
a(8)=4 because we have [8],[7,1],[5,3] and [4,3,1].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Cristina Ballantine, Mircea Merca, On identities of Watson type, Ars Mathematica Contemporanea (2019) Vol. 17, 277-290.
Programs
-
Maple
g:=(1+x)*product(1+x^j,j=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..57); # Emeric Deutsch, Apr 09 2006
-
Mathematica
CoefficientList[Series[Product[1+q^n, {n, 1, 60}]/(1+q^2), {q, 0, 60}], q] Table[Count[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], x_ /; ! MemberQ[x, 2]], {n, 0, 57}] (* Robert Price, May 17 2020 *)
Formula
G.f.: (1+x)*product(j>=3, 1+x^j ). - Emeric Deutsch, Apr 09 2006
a(n+2)=sum_{k=1..floor(n/2)} (-1)^(k-1)*A000009(n-2*k). - Mircea Merca, Feb 20 2014
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
Extensions
Corrected and extended by Dean Hickerson, Oct 10 2001
Comments