cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015744 Number of partitions of n into distinct parts, none being 2.

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 22, 27, 32, 37, 44, 52, 60, 70, 82, 95, 110, 127, 146, 169, 194, 221, 254, 291, 331, 377, 429, 487, 553, 626, 707, 800, 903, 1016, 1145, 1288, 1445, 1622, 1819, 2036, 2278, 2546, 2842, 3172, 3536, 3936, 4381
Offset: 0

Views

Author

Keywords

Comments

With offset 2 (and a(0)=a(1)=0) the number of 2's in all partitions of n into distinct parts. [Joerg Arndt, Feb 20 2014]

Examples

			a(8)=4 because we have [8],[7,1],[5,3] and [4,3,1].
		

Crossrefs

Programs

  • Maple
    g:=(1+x)*product(1+x^j,j=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..57); # Emeric Deutsch, Apr 09 2006
  • Mathematica
    CoefficientList[Series[Product[1+q^n, {n, 1, 60}]/(1+q^2), {q, 0, 60}], q]
    Table[Count[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], x_ /; ! MemberQ[x, 2]], {n, 0, 57}] (* Robert Price, May 17 2020 *)

Formula

G.f.: (1+x)*product(j>=3, 1+x^j ). - Emeric Deutsch, Apr 09 2006
a(n+2)=sum_{k=1..floor(n/2)} (-1)^(k-1)*A000009(n-2*k). - Mircea Merca, Feb 20 2014
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015

Extensions

Corrected and extended by Dean Hickerson, Oct 10 2001