A015935 Positive integers n such that 2^n == 2^11 (mod n).
1, 2, 3, 4, 8, 11, 14, 15, 16, 31, 32, 35, 51, 56, 64, 121, 128, 146, 224, 256, 341, 451, 455, 496, 508, 512, 671, 781, 896, 1024, 1111, 1235, 1271, 1441, 1547, 1661, 1736, 1991, 2048, 2091, 2101, 2321, 2651, 2761, 2981, 3091, 3421, 3584, 3641, 3731, 3751, 4064, 4088, 4403, 4411, 4631, 4741, 5071, 5401, 5731, 5951, 6171, 6191, 6281, 6386, 6611, 6851, 6941, 7051, 7271, 7601, 7711, 7936, 8261, 8371, 8435, 8456, 8921
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- OEIS Wiki, 2^n mod n
Crossrefs
The odd terms form A276971.
Programs
-
Mathematica
m = 2^11; Join[Select[Range[m], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
-
PARI
isok(n) = Mod(2, n)^n == Mod(2, n)^11; \\ Michel Marcus, Oct 08 2018
Extensions
Edited by Max Alekseyev, Jul 30 2011
Comments