A015950 Numbers k such that k | 4^k + 1.
1, 5, 25, 125, 205, 625, 1025, 2525, 3125, 5125, 8405, 12625, 15625, 25625, 42025, 63125, 78125, 103525, 128125, 168305, 202525, 210125, 255025, 315625, 344605, 390625, 517625, 640625, 841525, 875125, 1012625, 1050625, 1275125
Offset: 1
Keywords
Examples
4^5 + 1 = 1025 and 1025 is divisible by 5, so 5 is a term.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..3514 (first 325 terms from Robert Israel)
Programs
-
Magma
[n: n in [1..10^6] | Modexp(4, n, n)+1 eq n]; // Jinyuan Wang, Dec 29 2018
-
Maple
select(n -> 4 &^ n + 1 mod n = 0, [1, seq(i,i=5..10^7,20)]); # Robert Israel, Sep 14 2017
-
Mathematica
Select[Prepend[20 Range[0, 10^5] + 5, 1], Mod[4^# + 1, #] == 0 &] (* Michael De Vlieger, Dec 31 2018 *)
-
PARI
is_A015950(n) = Mod(4,n)^n == -1; \\ Michel Marcus, Sep 15 2017
-
Python
A015950_list = [n for n in range(1,10**6) if pow(4,n,n) == n-1] # Chai Wah Wu, Mar 25 2021
Comments