A016041 Primes that are palindromic in base 2 (but written here in base 10).
3, 5, 7, 17, 31, 73, 107, 127, 257, 313, 443, 1193, 1453, 1571, 1619, 1787, 1831, 1879, 4889, 5113, 5189, 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191, 17377, 18097, 18289, 19433, 19609, 19801, 21157, 22541, 22669, 22861, 23581, 24029
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Zak Seidov, terms 1001..3000 from Michael De Vlieger)
- Kevin S. Brown, On General Palindromic Numbers
- Patrick De Geest, World!Of Palindromic Primes
Crossrefs
Programs
-
Magma
[NthPrime(n): n in [1..5000] | (Intseq(NthPrime(n), 2) eq Reverse(Intseq(NthPrime(n), 2)))]; // Vincenzo Librandi, Feb 24 2018
-
Mathematica
lst = {}; Do[ If[ PrimeQ@n, t = IntegerDigits[n, 2]; If[ FromDigits@t == FromDigits@ Reverse@ t, AppendTo[lst, n]]], {n, 3, 50000, 2}]; lst (* syntax corrected by Robert G. Wilson v, Aug 10 2009 *) pal2Q[n_] := Reverse[x = IntegerDigits[n, 2]] == x; Select[Prime[Range[2800]], pal2Q[#] &] (* Jayanta Basu, Jun 23 2013 *) genPal[n_Integer, base_Integer: 10] := Block[{id = IntegerDigits[n, base], insert = Join[{{}}, {# - 1} & /@ Range[base]]}, FromDigits[#, base] & /@ (Join[id, #, Reverse@id] & /@ insert)]; k = 0; lst = {}; While[k < 100, AppendTo[lst, Select[ genPal[k, 2], PrimeQ]]; lst = Flatten@ lst; k++]; lst (* Robert G. Wilson v, Feb 23 2018 *)
-
PARI
is(n)=isprime(n)&&Vecrev(n=binary(n))==n \\ M. F. Hasler, Feb 23 2018
-
Python
from sympy import isprime def ok(n): return isprime(n) and (b:=bin(n)[2:]) == b[::-1] print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Apr 20 2024
Formula
Sum_{n>=1} 1/a(n) = A194097. - Amiram Eldar, Mar 19 2021
Extensions
More terms from Patrick De Geest
Comments