cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016069 Numbers k such that k^2 contains exactly 2 distinct digits.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 21, 22, 26, 30, 38, 88, 100, 109, 173, 200, 212, 235, 264, 300, 1000, 2000, 3000, 3114, 10000, 20000, 30000, 81619, 100000, 200000, 300000, 1000000, 2000000, 3000000, 10000000, 20000000, 30000000, 100000000, 200000000, 300000000
Offset: 1

Views

Author

Keywords

Comments

10^k, 2*10^k, 3*10^k for k > 0 are terms. - Chai Wah Wu, Dec 17 2021
Subsequence of primes is A057659. - Bernard Schott, Jul 29 2022

Examples

			26 is in the sequence because 26^2 = 676 contains exactly 2 distinct digits.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, F24.

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a016069 n = a016069_list !! (n-1)
    a016069_list = filter ((== 2) . length . nub . show . (^ 2)) [0..]
    -- Reinhard Zumkeller, Apr 14 2011
    
  • Magma
    [n: n in [0..20000000] | #Set(Intseq(n^2)) eq 2]; // Vincenzo Librandi, Nov 04 2014
  • Mathematica
    Join[Select[Range[90000],Count[DigitCount[#^2],?(#!=0&)]==2&],Flatten[ NestList[ 10#&,{100000,200000,300000},5]]] (* _Harvey P. Dale, Mar 09 2013 *)
    Select[Range[20000000], Length[Union[IntegerDigits[#^2]]]==2&] (* Vincenzo Librandi, Nov 04 2014 *)
  • PARI
    /* needs version >= 2.6 */
    for (n=1, 10^9, if ( #Set(digits(n^2))==2, print1(n,", ") ) );
    /* Joerg Arndt, Mar 09 2013 */
    
  • Python
    from gmpy2 import is_square, isqrt
    from itertools import combinations, product
    A016069_list = []
    for g in range(2,10):
        n = 2**g-1
        for x in combinations('0123456789',2):
            for i,y in enumerate(product(x,repeat=g)):
                if i > 0 and i < n and y[0] != '0':
                    z = int(''.join(y))
                    if is_square(z):
                        A016069_list.append(int(isqrt(z)))
    A016069_list = sorted(A016069_list) # Chai Wah Wu, Nov 03 2014
    

Formula

a(n) = ((n-1) mod 3 + 1)*10^(ceiling(n/3)-7) for n >= 34 (conjectured). - Chai Wah Wu, Dec 17 2021