A016153 a(n) = (9^n-4^n)/5.
0, 1, 13, 133, 1261, 11605, 105469, 953317, 8596237, 77431669, 697147165, 6275373061, 56482551853, 508359743893, 4575304803901, 41178011670565, 370603178776909, 3335432903959477, 30018913315504477, 270170288559017029
Offset: 0
Links
- John Elias, Illustration: Union of Cantor Square and Koch Snowflake fractals
- R. Flórez, R. A. Higuita and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Index entries for linear recurrences with constant coefficients, signature (13,-36).
Programs
-
Mathematica
Join[{a=0,b=1},Table[c=13*b-36*a;a=b;b=c,{n,60}]](*and/or*)f[n_]:=(9^n-4^n)/5;f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
-
PARI
a(n)=(9^n-4^n)/5
Formula
G.f.: x/((1-4*x)*(1-9*x)). a(n)=13*a(n-1)-36*a(n-2).
a(n) = A015441(2*n).
From Peter Bala, Jul 23 2025: (Start)
The following products telescope. Cf. A002450:
Product_{k >= 1} 1 + 6^k/a(k+1) = 3; Product_{k >= 1} 1 - 6^k/a(k+1) = 3/13.
Product_{k >= 1} 1 + (-6)^k/a(k+1) = 3/5; Product_{k >= 1} 1 - (-6)^k/a(k+1) = 15/13.
(End)
Comments