cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327317 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = 2^(n-1) ((x+r)^n - (x+s)^n)/(r - s), where r = 2 and s = 1/2.

Original entry on oeis.org

1, 5, 4, 21, 30, 12, 85, 168, 120, 32, 341, 850, 840, 400, 80, 1365, 4092, 5100, 3360, 1200, 192, 5461, 19110, 28644, 23800, 11760, 3360, 448, 21845, 87376, 152880, 152768, 95200, 37632, 8960, 1024, 87381, 393210, 786384, 917280, 687456, 342720, 112896
Offset: 1

Views

Author

Clark Kimberling, Nov 03 2019

Keywords

Comments

p(x,n) is a strong divisibility sequence of polynomials. That is, gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			First six rows:
     1;
     5,    4;
    21,   30,   12;
    85,  168,  120,   32;
   341,  850,  840,  400,   80;
  1365, 4092, 5100, 3360, 1200, 192;
The first six polynomials, not factored:
1, 5 + 4 x, 21 + 30 x + 12 x^2, 85 + 168 x + 120 x^2 + 32 x^3, 341 + 850 x + 840 x^2 + 400 x^3 + 80 x^4, 1365 + 4092 x + 5100 x^2 + 3360 x^3 + 1200 x^4 + 192 x^5.
The first six polynomials, factored:
1, 5 + 4 x, 3 (7 + 10 x + 4 x^2), (5 + 4 x) (17 + 20 x + 8 x^2), 341 + 850 x + 840 x^2 + 400 x^3 + 80 x^4, 3 (5 + 4 x) (7 + 10 x + 4 x^2) (13 + 10 x + 4 x^2).
		

Crossrefs

Cf. A327316, A002450 (x=0), A016137 (x=1), A001045 (x = -1), A016162 (x = 2), A016181 (x = 3), A016127 (x = -3), A016157 (x = 1/2).

Programs

  • Mathematica
    r = 2; s = 1/2; f[x_, n_] := 2^(n - 1) ((x + r)^n - (x + s)^n)/(r - s);
    Column[Table[Expand[f[x, n]], {n, 1, 5}]]
    c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
    TableForm[Table[c[x, n], {n, 1, 10}]] (* A327317 array *)
    Flatten[Table[c[x, n], {n, 1, 12}]]   (* A327317 sequence *)

A248341 a(n) = 10^n - 7^n.

Original entry on oeis.org

0, 3, 51, 657, 7599, 83193, 882351, 9176457, 94235199, 959646393, 9717524751, 98022673257, 986158712799, 9903110989593, 99321776927151, 995252438490057, 9966767069430399, 99767369486012793, 998371586402089551, 9988601104814626857
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-7^n: A016177 (k=8), A191467 (k=9), this sequence(k=10), A139745 (k=11).

Programs

  • Magma
    [10^n-7^n: n in [0..30]];
  • Mathematica
    Table[10^n - 7^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x/((1 - 7 x) (1 - 10 x)), {x, 0, 30}], x]
    LinearRecurrence[{17,-70},{0,3},20] (* Harvey P. Dale, Dec 18 2020 *)

Formula

G.f.: 3*x/((1-7*x)*(1-10*x)).
a(n) = 17*a(n-1) - 70*a(n-2).
a(n) = A011557(n) - A000420(n).
a(n+1) = 3*A016181(n).
E.g.f.: 2*exp(17*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Apr 01 2025

A102752 Array read by antidiagonals: T(n, k) = ((n+2)^k-(n-1)^k)/3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 5, 9, 5, 0, 1, 7, 21, 27, 11, 0, 1, 9, 39, 85, 81, 21, 0, 1, 11, 63, 203, 341, 243, 43, 0, 1, 13, 93, 405, 1031, 1365, 729, 85, 0, 1, 15, 129, 715, 2511, 5187, 5461, 2187, 171, 0, 1, 17, 171, 1157, 5261, 15309, 25999, 21845, 6561, 341, 0, 1
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 09 2005

Keywords

Comments

Consider a 3 X 3 matrix M =
[n, 1, 1]
[1, n, 1]
[1, 1, n].
The n-th row of the array contains the values of the nondiagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = nondiagonal entry + (n-1)^k.)
Table:
n: row sequence G.f. cross references.
0: (2^n-(-1)^n)/3 1/((1+1x)(1-2x)) A001045 (Jacobsthal sequence)
1: (3^n-0^n)/3 1/(1-3x) A000244
2: (4^n-1^n)/3 1/((1-1x)(1-4x)) A002450
3: (5^n-2^n)/3 1/((1-2x)(1-5x)) A016127
4: (6^n-3^n)/3 1/((1-3x)(1-6x)) A016137
5: (7^n-4^n)/3 1/((1-4x)(1-7x)) A016150
6: (8^n-5^n)/3 1/((1-5x)(1-8x)) A016162
7: (9^n-6^n)/3 1/((1-6x)(1-9x)) A016172
8: (10^n-7^n)/3 1/((1-7x)(1-10x)) A016181
9: (11^n-8^n)/3 1/((1-8x)(1-11x)) A016187
10:(12^n-9^n)/3 1/((1-9x)(1-12x)) A016191
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+2.
Columns follow polynomials with certain binomial coefficients:
column: polynomial
0: 0
1: 1
2: 2*n + 1
3: 3*n^2+ 3*n + 3
4: 4*n^3+ 6*n^2+ 12*n + 5
5: 5*n^4+10*n^3+ 30*n^2+ 25*n + 11
6: 6*n^5+15*n^4+ 60*n^3+ 75*n^2+ 66*n + 21
7: 7*n^6+21*n^5+105*n^4+ 175*n^3+ 231*n^2+ 147*n + 43
8: 8*n^7+28*n^6+168*n^5+ 350*n^4+ 616*n^3+ 588*n^2+344*n+ 85
etc.
Coefficients are generated by the array T(n,k)=(2^(n-k-1)-(-1)^(n-k-1))/3*(binomial(k+(n-k-1),n-k-1)) read by antidiagonals.

Examples

			Array begins:
  0, 1, 1,  3,   5,   11, ...
  0, 1, 3,  9,  27,   81, ...
  0, 1, 5, 21,  85,  341, ...
  0, 1, 7, 39, 203, 1031, ...
  0, 1, 9, 63, 405, 2511, ...
  ...
		

Programs

  • PARI
    MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M for(k=0,10, for(i=0,10,print1((MM(3,k)^i)[1,2],","));print())
Showing 1-3 of 3 results.