A016196 Expansion of 1/((1-10*x)*(1-12*x)).
1, 22, 364, 5368, 74416, 992992, 12915904, 164990848, 2079890176, 25958682112, 321504185344, 3958050224128, 48496602689536, 591959232274432, 7203510787293184, 87442129447518208, 1059305553370218496, 12811666640442621952, 154739999685311463424, 1866879996223737561088
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (22,-120).
Programs
-
Mathematica
A016196[n_] := 6*12^n - 5*10^n; Array[A016196, 20, 0] (* or *) LinearRecurrence[{22, -120}, {1, 22}, 20] (* Paolo Xausa, Feb 08 2024 *)
-
PARI
Vec(1/((1-10*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Formula
a(n) = 6*12^n - 5*10^n. - Bruno Berselli, Feb 09 2011
a(n) = 12*a(n-1) + 10^n, a(0)=1. - Vincenzo Librandi, Feb 09 2011
a(n) = 22*a(n-1) - 120*a(n-2); a(0)=1, a(1)=22. - Vincenzo Librandi, Feb 09 2011