A016282 Expansion of 1/((1-2*x)*(1-4*x)*(1-5*x)).
1, 11, 83, 535, 3171, 17871, 97483, 520055, 2731091, 14179231, 72992283, 373347975, 1900290211, 9635660591, 48715157483, 245723238295, 1237206060531, 6220389909951, 31239388241083, 156746696495015, 785932504682051, 3938458614335311, 19727477439571083
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (11,-38,40).
Crossrefs
Programs
-
Mathematica
CoefficientList[ Series[ 1/((1 - 2x)(1 - 4x)(1 - 5x)), {x, 0, 20} ], x ] LinearRecurrence[{11,-38,40},{1,11,83},30] (* Harvey P. Dale, Nov 29 2022 *)
-
PARI
Vec(1/((1-2*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
Sage
[(5^n - 2^n)/3-(4^n - 2^n)/2 for n in range(2,21)] # Zerinvary Lajos, Jun 05 2009
Formula
a(n) = (2/3)*2^n - 8*(4)^n + (25/3)*5^n. - Antonio Alberto Olivares, May 12 2012