A016283 a(n) = 6^n/8 - 4^(n-1) + 2^(n-3).
0, 0, 1, 12, 100, 720, 4816, 30912, 193600, 1194240, 7296256, 44301312, 267904000, 1615810560, 9728413696, 58504691712, 351565004800, 2111537479680, 12677814747136, 76101248090112, 456744927232000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..150
- Index entries for linear recurrences with constant coefficients, signature (12, -44, 48).
Programs
-
Magma
[6^n/8 - 4^(n-1) + 2^(n-3): n in [0..25]]; // Vincenzo Librandi, Apr 26 2011
-
Maple
[seq(9/2*6^n-4*4^n+1/2*2^n,n=0..20)]; # Detlef Pauly (dettodet(AT)yahoo.de), Dec 04 2001
-
Mathematica
CoefficientList[Series[x^2/((1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 31 2018 *)
-
Sage
[((6^n - 2^n)/4-(4^n - 2^n)/2)/2 for n in range(0,21)] # Zerinvary Lajos, Jun 05 2009
Formula
a(n) = (2^n)*Stirling2(n+3, 3), n >= 0, with Stirling2(n, m) = A008277(n, m).
G.f.: x^2/((1-2*x)*(1-4*x)*(1-6*x)).
E.g.f.: (exp(2*x) - 8*exp(4*x) + 9*exp(6*x))/2!.
a(n) =((6^n - 2^n)/4 - (4^n - 2^n)/2)/2 , n >= 0. - Zerinvary Lajos, Jun 05 2009
Comments