A016726 Smallest k such that 1, 4, 9, ..., n^2 are distinct mod k.
1, 2, 6, 9, 10, 13, 14, 17, 19, 22, 22, 26, 26, 29, 31, 34, 34, 37, 38, 41, 43, 46, 46, 53, 53, 53, 58, 58, 58, 61, 62, 67, 67, 71, 71, 73, 74, 79, 79, 82, 82, 86, 86, 89, 94, 94, 94, 97, 101, 101, 103, 106, 106, 109, 113, 113, 118, 118, 118, 122, 122, 127, 127, 131, 131, 134
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Arnold, L. K.; Benkoski, S. J.; and McCabe, B. J.; The discriminator (a simple application of Bertrand's postulate). Amer. Math. Monthly 92 (1985), 275-277.
Programs
-
Haskell
a016726 n = a016726_list !! (n-1) a016726_list = [1,2,6,9] ++ (f 5 $ drop 4 a001751_list) where f n qs'@(q:qs) | q < 2*n = f n qs | otherwise = q : f (n+1) qs' -- Reinhard Zumkeller, Jun 20 2011
-
Mathematica
a[n_] := (k = 2n; While[ Not[PrimeQ[k] || PrimeQ[k/2]], k++]; k); a[1]=1; a[2]=2; a[3]=6; a[4]=9; Table[a[n], {n, 1, 66}] (* Jean-François Alcover, Nov 30 2011, after formula *) sk[n_]:=Module[{k=2n,n2=Range[n]^2},While[Max[Tally[Mod[n2,k]][[All,2]]]> 1,k++];k]; Join[{1,2},Array[sk,70,3]] (* Harvey P. Dale, Oct 16 2016 *)
-
PARI
A016726_vec(nMax)={my(S=[], a=1); vector(nMax, n, S=concat(S, n^2); while(#Set(S%a)
M. F. Hasler, May 04 2016 -
PARI
A016726(n)=if(n>4,min(nextprime(2*n),2*nextprime(n)),[1,2,6,9][n]) \\ M. F. Hasler, May 04 2016
Formula
For n > 4, a(n) is smallest k >= 2n such that k = p or k = 2p, p a prime.
Comments