A016753 Expansion of 1/((1-3*x)*(1-4*x)*(1-5*x)).
1, 12, 97, 660, 4081, 23772, 133057, 724260, 3863761, 20308332, 105558817, 544039860, 2785713841, 14192221692, 72020501377, 364354427460, 1838822866321, 9262446387852, 46585947584737
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-47,60).
Programs
-
Magma
[(5^(n+2) - 2*4^(n+2) + 3^(n+2))/2: n in [0..30]]; // G. C. Greubel, Sep 15 2018
-
Mathematica
CoefficientList[ Series[ 1/((1 - 3x)(1 - 4x)(1 - 5x)), {x, 0, 25} ], x ] LinearRecurrence[{12,-47,60}, {1, 12, 97}, 30] (* G. C. Greubel, Sep 15 2018 *)
-
PARI
Vec(1/((1-3*x)*(1-4*x)*(1-5*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Formula
a(n) = 5^(n+2)/2 - 4^(n+2) + 3^(n+2)/2. - Paul Barry, May 13 2003
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,3), (n >= 2). - Milan Janjic, Apr 26 2009
a(n) = 9*a(n-1) - 20*a(n-2) + 3^n, n >= 2. - Vincenzo Librandi, Mar 20 2011
O.g.f.: 1/((1-3*x)*(1-4*x)*(1-5*x)).
E.g.f.: (d^2/dx^2) (exp(3*x)*((exp(x)-1)^2)/2!). - Wolfdieter Lang, Oct 08 2011
a(n) = A245019(n+2)/2. - Kevin Long, Mar 24 2017
Comments