A349466 Expansion of 1/((1-12*x)*(1-16*x)*(1-18*x)*(1-24*x)).
1, 70, 3100, 111160, 3529456, 103663840, 2887307200, 77450369920, 2021488750336, 51703366274560, 1302470537804800, 32436048076257280, 800745898476630016, 19636648385968660480, 479101382689537638400, 11643791435175823114240, 282140675279022464106496
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (70,-1800,20160,-82944).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[1/((1 - 12 x) (1 - 16 x) (1 - 18 x) (1 - 24 x)), {x, 0, 20}], x] LinearRecurrence[{70,-1800,20160,-82944},{1,70,3100,111160},20] (* Harvey P. Dale, Apr 30 2023 *)
-
Python
def A349466(n): return 24*24**n + 64*2**(4*n) - 81*18**n - 6*12**n # Chai Wah Wu, Dec 27 2021
Formula
a(n) = 24^(n+1) - (2^n)*(3^(2*n+4)) - (2^(2*n+1))*(3^(n+1)) + 2^(4*n+6).
G.f.: 1/((1-(1/2)*4!*x)*(1-(2/3)*4!*x)*(1-(3/4)*4!*x)*(1-4!*x)).
E.g.f.: exp(12*x)*(24*exp(12*x) - 81*exp(6*x) + 64*exp(4*x) - 6). - Stefano Spezia, Nov 21 2021
a(n) = 24*24^n + 64*2^(4*n) - 81*18^n - 6*12^n. - Chai Wah Wu, Dec 27 2021
Comments