A016775 (3*n)^11.
0, 177147, 362797056, 31381059609, 743008370688, 8649755859375, 64268410079232, 350277500542221, 1521681143169024, 5559060566555523, 17714700000000000, 50542106513726817, 131621703842267136, 317475837322472439, 717368321110468608
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Programs
-
Magma
[(3*n)^11: n in [0..20]]; // Vincenzo Librandi, May 09 2011
-
Maple
A016775:=n->(3*n)^11: seq(A016775(n), n=0..20); # Wesley Ivan Hurt, Oct 28 2014
-
Mathematica
(3 Range[0, 20])^11 (* or *) CoefficientList[Series[177147 (x + 2036 x^2 + 152637 x^3 + 2203488 x^4 + 9738114 x^5 + 15724248 x^6 + 9738114 x^7 + 2203488 x^8 + 152637 x^9 + 2036 x^10 + x^11)/(x - 1)^12, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 28 2014 *)
-
Maxima
A016775(n):=(3*n)^11$ makelist(A016775(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
Formula
From Wesley Ivan Hurt, Oct 28 2014: (Start)
G.f.: 177147*(x + 2036*x^2 + 152637*x^3 + 2203488*x^4 + 9738114*x^5 + 15724248*x^6 + 9738114*x^7 + 2203488*x^8 + 152637*x^9 + 2036*x^10 + x^11) / (x - 1)^12.
a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12).