cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016802 a(n) = (4*n)^2.

Original entry on oeis.org

0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896, 28224
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016742. Sequence arises from reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Also, sequence found by reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

Formula

a(n) = 16*n^2 = 16*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 8*A001105(n) = 4*A016742(n) = 2*A139098(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 16*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/192.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/4)/(Pi/4).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/4)/(Pi/4) = 2*sqrt(2)/Pi (A112628). (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 16*x*(1 + x)/(1-x)^3.
E.g.f.: 16*x*(1 + x)*exp(x).
a(n) = n*A008598(n) = A195146(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)