cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155955 Triangle read by rows: T(n,k) = (k*n)^k, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 16, 1, 3, 36, 729, 1, 4, 64, 1728, 65536, 1, 5, 100, 3375, 160000, 9765625, 1, 6, 144, 5832, 331776, 24300000, 2176782336, 1, 7, 196, 9261, 614656, 52521875, 5489031744, 678223072849, 1, 8, 256, 13824, 1048576, 102400000, 12230590464
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 31 2009

Keywords

Comments

T(n,0) = 1;
T(n,1) = n for n > 0;
T(n,2) = A016742(n) for n > 1;
T(n,3) = A016767(n) for n > 2;
T(n,4) = A016804(n) for n > 3;
T(n,5) = A016853(n) for n > 4;
T(n,6) = A016914(n) for n > 5;
T(n,7) = A016987(n) for n > 6;
T(n,8) = A017072(n) for n > 7;
T(n,9) = A017169(n) for n > 8;
T(n,10) = A017278(n) for n > 9;
T(n,11) = A017399(n) for n > 10;
T(n,12) = A017532(n) for n > 11;
T(n,n) = A062206(n).

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  16;
  1, 3,  36,  729;
  1, 4,  64, 1728,  65536;
  1, 5, 100, 3375, 160000,  9765625;
  1, 6, 144, 5832, 331776, 24300000, 2176782336;
  ...
		

Crossrefs

Cf. A000312.

Programs

  • Magma
    [[(n*k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Sep 15 2018
  • Mathematica
    Table[If[n == 0, 1, If[ k == 0, 1, (k*n)^k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((k*n)^k, ", "))) \\ G. C. Greubel, Sep 15 2018
    

A229213 Square array of denominators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 16, 27, 4, 36, 216, 256, 5, 64, 729, 4096, 3125, 6, 100, 1728, 20736, 100000, 46656, 7, 144, 3375, 65536, 759375, 2985984, 823543, 8, 196, 5832, 160000, 3200000, 34012224, 105413504, 16777216, 9, 256
Offset: 1

Views

Author

Jean-François Alcover, Sep 16 2013

Keywords

Comments

Limit(t(n,k), n -> infinity) = exp(1/k).
1st row = A000027
2nd row = A016742
3rd row = A016767
4th row = A016804
5th row = A016853
1st column = A000312
2nd column = A062971
3rd column = A091482
4th column = A091483

Examples

			Table of fractions begins:
   2,       3/2,        4/3,         5/4, ...
  9/4,     25/16,      49/36,       81/64, ...
64/27,   343/216,   1000/729,    2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of denominators begins:
1,      2,     3,     4, ...
4,     16,    36,    64, ...
27,   216,   729,  1728, ...
256, 4096, 20736, 65536, ...
...
Triangle of antidiagonals begins:
1;
2, 4;
3, 16, 27;
4, 36, 216, 256;
...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Denominator
Showing 1-2 of 2 results.