cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016967 a(n) = (6*n + 4)^11.

Original entry on oeis.org

4194304, 100000000000, 17592186044416, 584318301411328, 8293509467471872, 70188843638032384, 419430400000000000, 1951354384207722496, 7516865509350965248, 24986644000165537792, 73786976294838206464, 197732674300000000000, 488595558857835544576, 1127073856954876807168
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016957(n)^11.
a(n) = 2^11*A016799(n).
Sum_{n>=0} 1/a(n) = 88573*zeta(11)/362797056 - 1847*Pi^11/(1285662067200*sqrt(3)). (End)

A016968 a(n) = (6*n + 4)^12.

Original entry on oeis.org

16777216, 1000000000000, 281474976710656, 12855002631049216, 232218265089212416, 2386420683693101056, 16777216000000000000, 89762301673555234816, 390877006486250192896, 1449225352009601191936, 4722366482869645213696, 13841287201000000000000, 37133262473195501387776
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016957(n)^12 = A016958(n)^6 = A016959(n)^4 = A016960(n)^3 = A016962(n)^2.
a(n) = 2^12*A016800(n).
Sum_{n>=0} 1/a(n) = PolyGamma(11, 2/3)/86890185149644800. (End)
Showing 1-2 of 2 results.