A016979 a(n) = (6*n + 5)^11.
48828125, 285311670611, 34271896307633, 952809757913927, 12200509765705829, 96549157373046875, 550329031716248441, 2472159215084012303, 9269035929372191597, 30155888444737842659, 87507831740087890625, 231122292121701565271, 564154396389137449973
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
Magma
[(6*n+5)^11 : n in [0..20]]; // Vincenzo Librandi, May 17 2011
-
Mathematica
(6Range[0,20]+5)^11 (* or *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{48828125,285311670611,34271896307633,952809757913927,12200509765705829,96549157373046875,550329031716248441,2472159215084012303,9269035929372191597,30155888444737842659,87507831740087890625,231122292121701565271},20] (* Harvey P. Dale, Dec 17 2024 *)
Formula
a(n) = (6*n + 5)^11.
From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016969(n)^11.
Sum_{n>=0} 1/a(n) = 181308931*zeta(11)/362797056 - 1261501*Pi^11/(428554022400*sqrt(3)). (End)