A017078 a(n) = (8*n + 1)^2.
1, 81, 289, 625, 1089, 1681, 2401, 3249, 4225, 5329, 6561, 7921, 9409, 11025, 12769, 14641, 16641, 18769, 21025, 23409, 25921, 28561, 31329, 34225, 37249, 40401, 43681, 47089, 50625, 54289, 58081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(8*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Jul 11 2011
-
Mathematica
(8*Range[0,40] +1)^2 (* G. C. Greubel, Dec 28 2022 *)
-
PARI
a(n)=(8*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[(8*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
Formula
G.f.: (1 + 78*x + 49*x^2)/(1-x)^3. - R. J. Mathar, Mar 21 2016
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A016754(8*n).
E.g.f.: (1 + 80*x + 64*x^2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = psi'(1/8)/64 = 1.02168958507793.. - R. J. Mathar, May 07 2024