cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157952 a(n) = 162*n + 1.

Original entry on oeis.org

163, 325, 487, 649, 811, 973, 1135, 1297, 1459, 1621, 1783, 1945, 2107, 2269, 2431, 2593, 2755, 2917, 3079, 3241, 3403, 3565, 3727, 3889, 4051, 4213, 4375, 4537, 4699, 4861, 5023, 5185, 5347, 5509, 5671, 5833, 5995, 6157, 6319, 6481, 6643, 6805, 6967
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2009

Keywords

Comments

The identity (162*n + 1)^2 - (81*n^2 + n)*18^2 = 1 can be written as a(n)^2 - (A017162(n) + n)*18^2 = 1. - Vincenzo Librandi, Feb 10 2012

Crossrefs

Cf. A017162.

Programs

  • Magma
    I:=[163, 325]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 10 2012
    
  • Mathematica
    162Range[50]+1 (* or *) LinearRecurrence[{2,-1},{163,325},50](* Harvey P. Dale, Aug 10 2011 *)
  • PARI
    for(n=1, 50, print1(162*n+1", ")); \\ Vincenzo Librandi, Feb 10 2012

Formula

a(n) = 2*a(n-1) - a(n-2), a(0)=163, a(1)=325. - Harvey P. Dale, Aug 10 2011
G.f.: x*(163-x)/(1-x)^2. - Vincenzo Librandi, Feb 10 2012

A303302 a(n) = 34*n^2.

Original entry on oeis.org

0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
Offset: 0

Views

Author

Omar E. Pol, May 13 2018

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).

Programs

  • Magma
    [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
  • Mathematica
    Table[34 n^2, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{0,34,136},50] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    a(n) = 34*n^2;
    
  • PARI
    concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
    

Formula

a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Showing 1-2 of 2 results.