A017402 a(n) = (11*n+1)^2.
1, 144, 529, 1156, 2025, 3136, 4489, 6084, 7921, 10000, 12321, 14884, 17689, 20736, 24025, 27556, 31329, 35344, 39601, 44100, 48841, 53824, 59049, 64516, 70225, 76176, 82369, 88804, 95481, 102400
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(11*n+1)^2: n in [0..50]]; // G. C. Greubel, Dec 24 2022
-
Mathematica
(11*Range[0,30]+1)^2 (* or *) LinearRecurrence[{3,-3,1},{1,144,529},30] (* Harvey P. Dale, May 05 2014 *)
-
PARI
a(n)=(11*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[(11*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 05 2014
From G. C. Greubel, Dec 24 2022: (Start)
G.f.: (1 + 141*x + 100*x^2)/(1-x)^3.
E.g.f.: (1 + 143*x + 121*x^2)*exp(x). (End)