A017439 a(n) = (11*n + 4)^3.
64, 3375, 17576, 50653, 110592, 205379, 343000, 531441, 778688, 1092727, 1481544, 1953125, 2515456, 3176523, 3944312, 4826809, 5832000, 6967871, 8242408, 9663597, 11239424, 12977875, 14886936, 16974593, 19248832, 21717639, 24389000, 27270901, 30371328, 33698267, 37259704, 41063625
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (11*n + 4)^3); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n + 4)^3: n in [0..40]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq((11*n + 4)^3, n=0..40); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[40] -7)^3 (* G. C. Greubel, Sep 18 2019 *) LinearRecurrence[{4,-6,4,-1},{64,3375,17576,50653},40] (* Harvey P. Dale, Feb 10 2024 *)
-
PARI
vector(40, n, (11*n-7)^3) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n + 4)^3 for n in (0..40)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (64 + 3119*x + 4460*x^2 + 343*x^3)/(1-x)^4.
E.g.f.: (64 + 3311*x + 5445*x^2 + 1331*x^3)*exp(x). (End)
Extensions
Terms a(23) onward added by G. C. Greubel, Sep 18 2019