A017443 a(n) = (11*n + 4)^7.
16384, 170859375, 8031810176, 94931877133, 587068342272, 2488651484819, 8235430000000, 22876792454961, 55784660123648, 122987386542487, 250226879128704, 476837158203125, 860542568759296, 1483273860320763
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+4)^7); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+4)^7: n in [0..20]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq((11*n+4)^7, n=0..20); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[40] -7)^7 (* G. C. Greubel, Sep 18 2019 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{16384,170859375,8031810176,94931877133,587068342272,2488651484819,8235430000000,22876792454961},20] (* Harvey P. Dale, Dec 29 2024 *)
-
PARI
vector(20, n, (11*n-7)^7) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n+4)^7 for n in (0..20)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (16384 +170728303*x +6665393928*x^2 +35460540721*x^3 +42937032016*x^4 +12375175257*x^5 +605631688*x^6 +823543*x^7)/(1-x)^8.
E.g.f.: (16384 +170842991*x +3845053905*x^2 +11891501391*x^3 +10618678070*x^4 +3526372696*x^5 +458834299*x^6 +19487171*x^7)*exp(x). (End)