A017451 a(n) = (11*n + 5)^3.
125, 4096, 19683, 54872, 117649, 216000, 357911, 551368, 804357, 1124864, 1520875, 2000376, 2571353, 3241792, 4019679, 4913000, 5929741, 7077888, 8365427, 9800344, 11390625, 13144256, 15069223, 17173512, 19465109, 21952000, 24642171, 27543608, 30664297, 34012224, 37595375, 41421736
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (11*n+5)^3); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+5)^3: n in [0..40]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^3, n=0..40); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[40] -6)^3 (* G. C. Greubel, Sep 18 2019 *)
-
PARI
vector(40, n, (11*n-6)^3) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n+5)^3 for n in (0..40)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (125 +3596*x +4049*x^2 +216*x^3)/(1-x)^4.
E.g.f.: (125 +3971*x +5808*x^2 +1331*x^3)*exp(x). (End)