A017470 a(n) = (11*n + 6)^10.
60466176, 2015993900449, 296196766695424, 8140406085191601, 97656250000000000, 713342911662882601, 3743906242624487424, 15516041187205853449, 53861511409489970176, 162889462677744140625
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+6)^10); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+6)^10: n in [0..10]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+6)^10, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[20] -5)^10 (* G. C. Greubel, Sep 19 2019 *)
-
PARI
vector(20, n, (11*n-5)^10) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+6)^10 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019:(Start)
G.f.: (60466176 +2015328772513*x +274024159430165*x^2 +4993111339147592* x^3 +24069986191404704*x^4 +38639279895450554*x^5 +21874532039020442*x^6 +4073880923146640*x^7 +193797041298488*x^8 +1099404205901*x^9 +9765625* x^10)/(1-x)^11.
E.g.f.: (60466176 +2015933434273*x +146082419680351*x^2 +1209643951056750 *x^3 +2785989264344605*x^4 +2529281956307337*x^5 +1069882300751187*x^6 + 228102792962880*x^7 +24893496850530*x^8 +1308660968505*x^9 +25937424601* x^10)*exp(x). (End)