A017484 a(n) = (11*n + 7)^12.
13841287201, 1156831381426176, 353814783205469041, 16777216000000000000, 309629344375621415601, 3226266762397899821056, 22902048046490258711521, 123410307017276135571456, 540360087662636962890625, 2012196471835550329409536, 6580067382037190942729361
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+7)^12); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^12: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^12, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[21] -4)^12 (* G. C. Greubel, Sep 19 2019 *)
-
Maxima
makelist((11*n+7)^12, n,0,20); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(20, n, (11*n-4)^12) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+7)^12 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (13841287201 +1156651444692563*x +338777054867330431*x^2 + 12267852707472004709*x^3 +118792245587080463178*x^4 + 409344222142040360670*x^5 +564873972371695167390*x^6 + 320832301424673327498*x^7 +71415318201137477061*x^8 + 5352495778795351967*x^9 +93742255577726899*x^10 129746119786817*x^11 - 16777216*x^12)/(1-x)^13.
E.g.f.: (13841287201 +1156817540138975*x + 175750567141951945*x^2 + 2619873688447764034*x^3 +10193280906798742181*x^4 +15352998640256699136 *x^5 + 10914782775709466368*x^6 +4085382181827774828*x^7 + 853384566008402142*x^8 +101542034509085885*x^9 +6753041931691759*x^10 + 231102453194910*x^11 +3138428376721*x^12)*exp(x). (End)