A017486 a(n) = (11*n + 8)^2.
64, 361, 900, 1681, 2704, 3969, 5476, 7225, 9216, 11449, 13924, 16641, 19600, 22801, 26244, 29929, 33856, 38025, 42436, 47089, 51984, 57121, 62500, 68121, 73984, 80089, 86436, 93025, 99856, 106929, 114244, 121801, 129600, 137641, 145924, 154449, 163216, 172225, 181476, 190969, 200704
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..45], n-> (11*n+8)^2); # G. C. Greubel, Sep 21 2019
-
Magma
[(11*n+8)^2: n in [0..45]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+8)^2, n=0..45); # G. C. Greubel, Sep 21 2019
-
Mathematica
(11*Range[45]-3)^2 (* G. C. Greubel, Sep 21 2019 *)
-
PARI
a(n)=(11*n+8)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(11*n+8)^2 for n in (0..45)] # G. C. Greubel, Sep 21 2019
Formula
From G. C. Greubel, Sep 21 2019: (Start)
G.f.: (64 + 169*x + 9*x^2)/(1-x)^3.
E.g.f.: (64 + 297*x + 121*x^2)*exp(x). (End)