A017489 a(n) = (11*n + 8)^5.
32768, 2476099, 24300000, 115856201, 380204032, 992436543, 2219006624, 4437053125, 8153726976, 14025517307, 22877577568, 35723051649, 53782400000, 78502725751, 111577100832, 154963892093, 210906087424, 281950621875, 370967703776, 481170140857, 616132666368
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+8)^5); # G. C. Greubel, Sep 22 2019
-
Magma
[(11*n+8)^5: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+8)^5, n=0..30); # G. C. Greubel, Sep 22 2019
-
Mathematica
(11*Range[31] -3)^5 (* G. C. Greubel, Sep 22 2019 *)
-
PARI
vector(30, n, (11*n-3)^5) \\ G. C. Greubel, Sep 22 2019
-
Sage
[(11*n+8)^5 for n in (0..30)] # G. C. Greubel, Sep 22 2019
Formula
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (32768 +2279491*x +9934926*x^2 +6542326*x^3 +536366*x^4 +243*x^5 )/(1-x)^6.
E.g.f.: (32768 +2443331*x +9690285*x^2 +8391955*x^3 +2196150*x^4 +161051* x^5)*exp(x). (End)