A017494 a(n) = (11*n + 8)^10.
1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624, 1276136419117121619201, 2892546549760000000000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+8)^10); # G. C. Greubel, Sep 22 2019
-
Magma
[(11*n+8)^10: n in [0..20]]; // G. C. Greubel, Sep 22 2019
-
Maple
seq((11*n+8)^10, n=0..20); # G. C. Greubel, Sep 22 2019
-
Mathematica
(11*Range[21] -3)^10 (* G. C. Greubel, Sep 22 2019 *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1073741824,6131066257801,590490000000000,13422659310152401,144555105949057024,984930291881790849,4923990397355877376,19687440434072265625,66483263599150104576,196715135728956532249,523383555379856794624},20] (* Harvey P. Dale, May 08 2022 *)
-
PARI
vector(20, n, (11*n-3)^10) \\ G. C. Greubel, Sep 22 2019
-
Sage
[(11*n+8)^10 for n in (0..20)] # G. C. Greubel, Sep 22 2019
Formula
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (1073741824 +6119255097737*x +523107326964509*x^2 +7264300786930496 *x^3 +28371531939645368*x^4 +37662294296897282*x^5 +17578871136786818* x^6 +2623025688296696*x^7 +92185633683584*x^8 +289254005437*x^9 +59049* x^10)/(1-x)^11.
E.g.f.: (1073741824 +6129992515977*x +289114470613111*x^2 +1944930239197330*x^3 +3932620229881585*x^4 +3254225912463141*x^5 + 1282086963575187*x^6 +258144995263320*x^7 +26861311378110*x^8 + 1355819922325*x^9 +25937424601*x^10)*exp(x). (End)
Extensions
More terms added by G. C. Greubel, Sep 22 2019