A017496 a(n) = (11*n + 8)^12.
68719476736, 2213314919066161, 531441000000000000, 22563490300366186081, 390877006486250192896, 3909188328478827879681, 26963771415920784510976, 142241757136172119140625, 612709757329767363772416, 2252191588960823337718801
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+8)^12); # G. C. Greubel, Sep 22 2019
-
Magma
[(11*n+8)^12: n in [0..20]]; // G. C. Greubel, Sep 22 2019
-
Maple
seq((11*n+8)^12, n=0..20); # G. C. Greubel, Sep 22 2019
-
Mathematica
(11*Range[0,20]+8)^12 (* Harvey P. Dale, Jul 31 2012 *)
-
Maxima
makelist( (11*n+8)^12, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(20, n, (11*n-3)^12) \\ G. C. Greubel, Sep 22 2019
-
Sage
[(11*n+8)^12 for n in (0..20)] # G. C. Greubel, Sep 22 2019
Formula
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (68719476736 +2212421565868593*x +502673266171325315 x^2 + 15827376210283000143*x^3 +138371071649062718037*x^4 + 437329793311303632234*x^5 +556703322340591831614*x^6 + 291323423723258446014*x^7 +59225473544688673002*x^8 + 3967943081254819733*x^9 +58867623955964175*x^10 +56693905466563*x^11 + 531441*x^12)/(1-x)^13.
E.g.f.: (68719476736 +2213246199589425*x +263507219440672207*x^2 + 3495967862733984638*x^3 +12658451587242860861*x^4 +18126123796309288584* x^5 +12400673710435349284*x^6 +4501229025478529124*x^7 + 916653053822529507*x^8 +106739635024880275*x^9 +6967025684650009*x^10 + 234526193242242*x^11 +3138428376721*x^12)*exp(x). (End)