A017498 a(n) = (11*n + 9)^2.
81, 400, 961, 1764, 2809, 4096, 5625, 7396, 9409, 11664, 14161, 16900, 19881, 23104, 26569, 30276, 34225, 38416, 42849, 47524, 52441, 57600, 63001, 68644, 74529, 80656, 87025, 93636, 100489, 107584, 114921, 122500, 130321, 138384, 146689, 155236, 164025
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+9)^2 ); # G. C. Greubel, Oct 28 2019
-
Magma
[(11*n+9)^2: n in [0..30]]; // G. C. Greubel, Oct 28 2019
-
Maple
seq((11*n+9)^2, n=0..30); # G. C. Greubel, Oct 28 2019
-
Mathematica
(11Range[0,30]+9)^2 (* or *) LinearRecurrence[{3,-3,1},{81,400,961},30] (* Harvey P. Dale, Oct 30 2011 *)
-
PARI
a(n)=(11*n+9)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(11*n+9)^2 for n in (0..30)] # G. C. Greubel, Oct 28 2019
Formula
a(0)=81, a(1)=400, a(2)=961, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 30 2011
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (81 + 157*x +4*x^2)/(1-x)^3.
E.g.f.: (81 + 319*x + 121*x^2)*exp(x). (End)