A017499 a(n) = (11*n + 9)^3.
729, 8000, 29791, 74088, 148877, 262144, 421875, 636056, 912673, 1259712, 1685159, 2197000, 2803221, 3511808, 4330747, 5268024, 6331625, 7529536, 8869743, 10360232, 12008989, 13824000, 15813251, 17984728, 20346417, 22906304, 25672375, 28652616, 31855013
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+9)^3); # G. C. Greubel, Oct 28 2019
-
Magma
[(11*n+9)^3: n in [0..30]]; // G. C. Greubel, Oct 28 2019
-
Maple
seq((11*n+9)^3, n=0..30); # G. C. Greubel, Oct 28 2019
-
Mathematica
(11 Range[0,30]+9)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{729,8000,29791,74088},30] (* Harvey P. Dale, Feb 13 2018 *)
-
Maxima
makelist( (11*n+9)^3, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(31, n, (11*n-2)^3) \\ G. C. Greubel, Oct 28 2019
-
Sage
[(11*n+9)^3 for n in (0..30)] # G. C. Greubel, Oct 28 2019
Formula
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (729 + 5084*x + 2165*x^2 + 8*x^3)/(1-x)^4.
E.g.f.: (729 + 7271*x + 7260*x^2 + 1331*x^3)*exp(x). (End)