A017505 a(n) = (11*n + 9)^9.
387420489, 512000000000, 26439622160671, 406671383849472, 3299763591802133, 18014398509481984, 75084686279296875, 257327417311663616, 760231058654565217, 1999004627104432128, 4785448563124474679
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+9)^9); # G. C. Greubel, Oct 28 2019
-
Magma
[(11*n+9)^9: n in [0..20]]; // G. C. Greubel, Oct 28 2019
-
Maple
seq((11*n+9)^9, n=0..20); # G. C. Greubel, Oct 28 2019
-
Mathematica
(11*Range[20] -2)^9 (* G. C. Greubel, Oct 28 2019 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{387420489,512000000000,26439622160671,406671383849472,3299763591802133,18014398509481984,75084686279296875,257327417311663616,760231058654565217,1999004627104432128},20] (* Harvey P. Dale, Nov 18 2022 *)
-
Maxima
makelist((11*n+9)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(21, n, (11*n-2)^9) \\ G. C. Greubel, Oct 28 2019
-
Sage
[(11*n+9)^9 for n in (0..20)] # G. C. Greubel, Oct 28 2019
Formula
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (387420489 + 508125795110*x + 21337056082676*x^2 + 165268671784082*x^3 + 361474108840298*x^4 + 251642575443146*x^5 + 52874765679980*x^6 + 2535762569534*x^7 + 10604494253*x^8 + 512*x^9)/(1-x)^10.
E.g.f.: (387420489 + 511612579511*x + 12708004790580*x^2 + 54814688324495* x^3 + 76236174032865*x^4 + 44337148166157*x^5 + 12159505753164*x^6 + 1632362365986*x^7 + 102249186237*x^8 + 2357947691*x^9)*exp(x). (End)