A017510 a(n) = (11*n + 10)^2.
100, 441, 1024, 1849, 2916, 4225, 5776, 7569, 9604, 11881, 14400, 17161, 20164, 23409, 26896, 30625, 34596, 38809, 43264, 47961, 52900, 58081, 63504, 69169, 75076, 81225, 87616, 94249, 101124, 108241, 115600, 123201, 131044, 139129, 147456, 156025, 164836, 173889, 183184, 192721
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (11*n+10)^2); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^2: n in [0..40]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+10)^2, n=0..40); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11*Range[0,40]+10)^2 (* or *) LinearRecurrence[{3,-3,1}, {100,441,1024}, 40] (* Harvey P. Dale, Mar 31 2016 *)
-
PARI
a(n)=(11*n+10)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(11*n+10)^2 for n in (0..40)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100 + 141*x + x^2)/(1-x)^3.
E.g.f.: (100 + 341*x + 121*x^2)*exp(x). (End)