A017515 a(n) = (11*n + 10)^7.
10000000, 1801088541, 34359738368, 271818611107, 1338925209984, 4902227890625, 14645194571776, 37725479487783, 86812553324672, 182803912081669, 358318080000000, 662062621900811, 1164175380274048
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+10)^7); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^7: n in [0..20]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+10)^7, n=0..20); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11*Range[20] -1)^7 (* G. C. Greubel, Oct 29 2019 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{10000000,1801088541,34359738368,271818611107,1338925209984,4902227890625,14645194571776,37725479487783},20] (* Harvey P. Dale, Mar 24 2025 *)
-
PARI
vector(21, n, (11*n-1)^7) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^7 for n in (0..20)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000000 + 1721088541*x + 20231030040*x^2 + 46811183311*x^3 + 26288037136*x^4 + 3118171011*x^5 + 35831800*x^6 + x^7)/(1-x)^8.
E.g.f.: (10000000 + 1791088541*x + 15383780643*x^2 + 29022110271*x^3 + 18775618400*x^4 + 4926550090*x^5 + 533239861*x^6 + 19487171*x^7)*exp(x). (End)