A017517 a(n) = (11*n + 10)^9.
1000000000, 794280046581, 35184372088832, 502592611936843, 3904305912313344, 20711912837890625, 84590643846578176, 285544154243029527, 833747762130149888, 2171893279442309389, 5159780352000000000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+10)^9); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^9: n in [0..20]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+10)^9, n=0..20); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11*Range[20] -1)^9 (* G. C. Greubel, Oct 29 2019 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1000000000,794280046581,35184372088832,502592611936843,3904305912313344,20711912837890625,84590643846578176,285544154243029527,833747762130149888,2171893279442309389},20] (* Harvey P. Dale, Apr 02 2024 *)
-
Maxima
makelist((11*n+10)^9,n,0,30); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(21, n, (11*n-1)^9) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^9 for n in (0..20)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000000 + 784280046581*x + 27286571623022*x^2 + 186371493144668* x^3 + 366572931352634*x^4 + 229943411037290*x^5 + 42937656267554*x^6 + 1749554857988*x^7 + 5159780342*x^8 + x^9)/(1-x)^10.
E.g.f.: (1000000000 + 793280046581*x + 16798405997835*x^2 + 66570222635015* x^3 + 87577732371360*x^4 + 48903633958641*x^5 + 12992922453126*x^6 + 1699710028962*x^7 + 104178416166*x^8 + 2357947691*x^9)*exp(x). (End)