A017520 a(n) = (11*n + 10)^12.
1000000000000, 7355827511386641, 1152921504606846976, 39959630797262576401, 614787626176508399616, 5688009063105712890625, 37133262473195501387776, 188031682201497672618081, 784716723734800033386496, 2812664781782894485727281
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+10)^12); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^12: n in [0..20]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+10)^12, n=0..20); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11*Range[0,20]+10)^12 (* Harvey P. Dale, Oct 14 2012 *)
-
Maxima
makelist((11*n+10)^12,n,0,30); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(21, n, (11*n-1)^12) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^12 for n in (0..20)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000000000 + 7342827511386641*x + 1057373746958820643*x^2 + 25545119783261723711*x^3 + 183137251503172391205*x^4 + 488143704350667868074*x^5 + 528998728358533109886*x^6 + 234662813343627300126*x^7 + 39635845367890711434*x^8 + 2102226021911800565*x^9 + 21798715126193071*x^10 + 8916100448243*x^11 + x^12)/(1-x)^13.
E.g.f.: (1000000000000 + 7354827511386641*x + 569105424792036847*x^2 + 6087155460996032566*x^3 + 19243217071043901221*x^4 + 25018123360727376000*x^5 + 15895943833149490132*x^6 + 5437280856006223356*x^7 + 1053961441036472067*x^8 + 117674853236661875*x^9 + 7405264410708505*x^10 + 241373673336906*x^11 + 3138428376721*x^12)*exp(x). (End)