cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A017699 Numerator of sum of -18th powers of divisors of n.

Original entry on oeis.org

1, 262145, 387420490, 68719738881, 3814697265626, 50780172175525, 1628413597910450, 18014467229220865, 150094635684419611, 100000381469752777, 5559917313492231482, 4437239151658178615, 112455406951957393130, 213440241312117457625, 295578376770097015348
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017700 (denominator), A013676, A013677.

Programs

  • Magma
    [Numerator(DivisorSigma(18,n)/n^18): n in [1..20]]; // G. C. Greubel, Nov 05 2018
  • Mathematica
    Table[Numerator[DivisorSigma[18, n]/n^18], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 18)/n^18)) \\ G. C. Greubel, Nov 05 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017700(n) = zeta(18) (A013676).
Dirichlet g.f. of a(n)/A017700(n): zeta(s)*zeta(s+18).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017700(k) = zeta(19) (A013677). (End)

A322264 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{d|n} 1/d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 1, 1, 1, 64, 243, 256, 125, 18, 7, 1, 1, 128, 729, 1024, 625, 6, 49, 8, 1, 1, 256, 2187, 4096, 3125, 648, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 648, 2401, 512, 81, 5, 1, 1, 1024, 19683, 65536, 78125, 23328, 16807, 4096, 729, 10, 11, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,    1,      1,        1,        1,          1,  ...
  2,  3/2,    5/4,      9/8,    17/16,      33/32,  ...
  2,  4/3,   10/9,    28/27,    82/81,    244/243,  ...
  3,  7/4,  21/16,    73/64,  273/256,  1057/1024,  ...
  2,  6/5,  26/25,  126/125,  626/625,  3126/3125,  ...
  4,    2,  25/18,      7/6,  697/648,    671/648,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Denominator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = denominator of sigma_k(n)/n^k.
Showing 1-2 of 2 results.