cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017702 Denominator of sum of -19th powers of divisors of n.

Original entry on oeis.org

1, 524288, 1162261467, 274877906944, 19073486328125, 50779978334208, 11398895185373143, 144115188075855872, 1350851717672992089, 5000000000000000000, 61159090448414546291, 79869999842655731712
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017701.

Programs

  • Magma
    [Denominator(DivisorSigma(19,n)/n^19): n in [1..20]]; // G. C. Greubel, Nov 05 2018
  • Mathematica
    Table[Denominator[DivisorSigma[19, n]/n^19], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    vector(20, n, denominator(sigma(n, 19)/n^19)) \\ G. C. Greubel, Nov 05 2018