cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017708 Denominator of sum of -22nd powers of divisors of n.

Original entry on oeis.org

1, 4194304, 31381059609, 17592186044416, 2384185791015625, 65810851921133568, 3909821048582988049, 73786976294838206464, 984770902183611232881, 1000000000000000000000, 81402749386839761113321
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017707.

Programs

  • Magma
    [Denominator(DivisorSigma(22,n)/n^22): n in [1..20]]; // G. C. Greubel, Nov 05 2018
  • Mathematica
    Table[Denominator[DivisorSigma[22, n]/n^22], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    vector(20, n, denominator(sigma(n, 22)/n^22)) \\ G. C. Greubel, Nov 05 2018