cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017901 Expansion of 1/(1 - x^7 - x^8 - ...).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851, 31200, 39173
Offset: 0

Views

Author

Keywords

Comments

A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >= 7. - Milan Janjic, Jun 28 2010
a(n+7) equals the number of n-length binary words such that 0 appears only in a run length that is a multiple of 7. - Milan Janjic, Feb 17 2015
A017847(n) = |a(-n)| for n>=0. - Michael Somos, Oct 28 2018

Examples

			G.f. = 1 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + 2*x^14 + ... - _Michael Somos_, Oct 28 2018
		

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898, A017899, A017900, A017901, A017902, A017903, A017904.

Programs

  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    a := n -> (Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$5, 1][i] else 0 fi)^n)[7,7]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,1}, {1,0,0,0,0,0,0}, 60] (* Jean-François Alcover, Mar 28 2017 *)
  • PARI
    Vec((x-1)/(x-1+x^7)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = if( n < 0, polcoeff( 1 / (1 + x^6 - x^7) + x * O(x^-n), -n), polcoeff( (1 - x) / (1 - x - x^7) + x * O(x^n), n))}; /* Michael Somos, Oct 28 2018 */

Formula

G.f.: (x-1)/(x-1+x^7). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+7) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
a(n) = A005709(n) - A005709(n-1). - R. J. Mathar, Sep 07 2016
0 == a(n) + a(n+6) - a(n+7) for all n in Z. - Michael Somos, Oct 28 2018