cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017979 Powers of cube root of 2 rounded down.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 64, 80, 101, 128, 161, 203, 256, 322, 406, 512, 645, 812, 1024, 1290, 1625, 2048, 2580, 3250, 4096, 5160, 6501, 8192, 10321, 13003, 16384, 20642, 26007, 32768, 41285, 52015, 65536, 82570, 104031
Offset: 0

Views

Author

Keywords

Comments

Rounding has no effect when n is a multiple of 3, because then obviously (2^(1/3))^n = 2^(n/3). - Alonso del Arte, Jan 04 2014

Examples

			a(2) = 1 because the cube root of 2 squared is 1.5874...
a(3) = 2 because the cube root of 2 cubed is 2 exactly.
a(4) = 2 because the cube root of 2 to the fourth power is 2.519842...
		

Crossrefs

Sequences of the type: Powers of cube root of (k) rounded down: this sequence (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), A018024 (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), A018045 (k=24).

Programs

  • Magma
    [Floor(2^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 06 2014
    
  • Mathematica
    Table[Floor[(2^(1/3))^n], {n, 0, 49}] (* Alonso del Arte, Jan 04 2014 *)
  • Python
    from sympy import integer_nthroot
    def A017979(n): return integer_nthroot(1<Chai Wah Wu, Jun 18 2024

Extensions

a(44)-a(50) from Alex Ratushnyak, Jan 04 2014