A017979 Powers of cube root of 2 rounded down.
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 64, 80, 101, 128, 161, 203, 256, 322, 406, 512, 645, 812, 1024, 1290, 1625, 2048, 2580, 3250, 4096, 5160, 6501, 8192, 10321, 13003, 16384, 20642, 26007, 32768, 41285, 52015, 65536, 82570, 104031
Offset: 0
Keywords
Examples
a(2) = 1 because the cube root of 2 squared is 1.5874... a(3) = 2 because the cube root of 2 cubed is 2 exactly. a(4) = 2 because the cube root of 2 to the fourth power is 2.519842...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Sequences of the type: Powers of cube root of (k) rounded down: this sequence (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), A018024 (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), A018045 (k=24).
Programs
-
Magma
[Floor(2^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 06 2014
-
Mathematica
Table[Floor[(2^(1/3))^n], {n, 0, 49}] (* Alonso del Arte, Jan 04 2014 *)
-
Python
from sympy import integer_nthroot def A017979(n): return integer_nthroot(1<
Chai Wah Wu, Jun 18 2024
Extensions
a(44)-a(50) from Alex Ratushnyak, Jan 04 2014
Comments