cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017983 Powers of cube root of 3 rounded to nearest integer.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 56, 81, 117, 168, 243, 350, 505, 729, 1051, 1516, 2187, 3154, 4549, 6561, 9463, 13647, 19683, 28388, 40942, 59049, 85163, 122827, 177147, 255490, 368481, 531441, 766471, 1105442, 1594323, 2299412, 3316325, 4782969, 6898235
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. powers of cube root of k rounded up: A017980 (k=2), this sequence (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), A018025 (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).

Programs

  • Magma
    [Round(3^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 07 2014
    
  • Mathematica
    Table[Round[3^(n/3)], {n, 0, 50}] (* Vincenzo Librandi, Jan 07 2014 *)
    Round[CubeRoot[3]^Range[0,50]] (* Harvey P. Dale, Jul 21 2023 *)
  • Python
    from sympy import integer_nthroot
    def A017983(n): return -integer_nthroot(m:=3**n,3)[0]+integer_nthroot(m<<3,3)[0] # Chai Wah Wu, Jun 18 2024

Extensions

More terms from Vincenzo Librandi, Jan 07 2014