A017983 Powers of cube root of 3 rounded to nearest integer.
1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 56, 81, 117, 168, 243, 350, 505, 729, 1051, 1516, 2187, 3154, 4549, 6561, 9463, 13647, 19683, 28388, 40942, 59049, 85163, 122827, 177147, 255490, 368481, 531441, 766471, 1105442, 1594323, 2299412, 3316325, 4782969, 6898235
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. powers of cube root of k rounded up: A017980 (k=2), this sequence (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), A018025 (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).
Programs
-
Magma
[Round(3^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 07 2014
-
Mathematica
Table[Round[3^(n/3)], {n, 0, 50}] (* Vincenzo Librandi, Jan 07 2014 *) Round[CubeRoot[3]^Range[0,50]] (* Harvey P. Dale, Jul 21 2023 *)
-
Python
from sympy import integer_nthroot def A017983(n): return -integer_nthroot(m:=3**n,3)[0]+integer_nthroot(m<<3,3)[0] # Chai Wah Wu, Jun 18 2024
Extensions
More terms from Vincenzo Librandi, Jan 07 2014