A018210 Alkane (or paraffin) numbers l(9,n).
1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520, 4032, 6216, 9324, 13608, 19440, 27192, 37389, 50556, 67408, 88660, 115258, 148148, 188552, 237692, 297115, 368368, 453376, 554064, 672792, 811920, 974304, 1162800, 1380825, 1631796
Offset: 0
References
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- Winston C. Yang (paper in preparation).
Links
- N. J. A. Sloane, Classic Sequences
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Ata A. Uslu and Hamdi G. Ozmenekse, F(1,6,n)
- Ata A. Uslu and Hamdi G. Ozmenekse, F(1,4,n)
- Ata A. Uslu and Hamdi G. Ozmenekse, F(1,2,n)
- Index entries for linear recurrences with constant coefficients, signature (4, -3, -8, 14, 0, -14, 8, 3, -4, 1).
Crossrefs
Cf. A005995 (first differences).
Programs
-
Maple
a:=n-> (Matrix([[1,0$7,3,12]]). Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [4, -3, -8, 14, 0, -14, 8, 3, -4, 1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..33); # Alois P. Heinz, Jul 31 2008
-
Mathematica
CoefficientList[(1+3*x^2)/((1-x)^7*(1+x)^3) + O[x]^34, x] (* Jean-François Alcover, Jun 08 2015 *) LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1},{1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520},34] (* Ray Chandler, Sep 23 2015 *)
-
PARI
A018210(n)=(n+2)*(n+4)*(n+6)^2*(n^2+3*n+5)/1440-if(n%2,(n^2+7*n+11)/32) \\ M. F. Hasler, May 02 2009
Formula
G.f.: (1+3*x^2)/(1-x)^4/(1-x^2)^3. - N. J. A. Sloane
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(2n) = (n+1)(n+2)(n+3)^2(4n^2+6n+5)/90, a(2n-1) = n(n+1)(n+2)(n+3)(4n^2+6n+5)/90. - M. F. Hasler, May 02 2009
a(n) = (1/(2*6!))*(n+2)*(n+4)*(n+6)*((n+1)*(n+3)*(n+5) + 1*3*5) - (1/2)*(1/2^4)*(n^2+7*n+11)*(1/2)*(1-(-1)^n). - Yosu Yurramendi, Jun 23 2013
Comments