cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018211 Alkane (or paraffin) numbers l(10,n).

Original entry on oeis.org

1, 4, 20, 60, 170, 396, 868, 1716, 3235, 5720, 9752, 15912, 25236, 38760, 58200, 85272, 122661, 173052, 240460, 328900, 444158, 592020, 780572, 1017900, 1315015, 1682928, 2136304, 2689808, 3362600, 4173840, 5148144, 6310128
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Equals (1/2) * ((1, 8, 36, 120, 330, 792,...) + (1, 0, 4, 0, 10, 0, 20,...)); where (1, 8, 36,..) = A000580 = C(n,7), and (1, 4, 10,...) = the Tetrahedral numbers.

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • Winston C. Yang (paper in preparation).

Crossrefs

Cf. A282011.

Programs

  • Maple
    a:= n-> (Matrix([[1, 0$7, -1, -4, -20, -60]]). Matrix(12, (i,j)-> `if`(i=j-1, 1, `if`(j=1, [4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1][i], 0)))^n)[1,1]: seq(a(n), n=0..31); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    LinearRecurrence[{4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1},{1, 4, 20, 60, 170, 396, 868, 1716, 3235, 5720, 9752, 15912},32] (* Ray Chandler, Sep 23 2015 *)

Formula

G.f.: (1+6*x^2+x^4)/((1-x)^4*(1-x^2)^4). [ N. J. A. Sloane ]
l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(n) = (1/(2*7!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7) + (1/3)*(1/2^5)*(n+2)*(n+4)*(n+6)*(1/2)*(1+(-1)^n) [Yosu Yurramendi Jun 23 2013]